f

Slider: Incremental Sliding Window Analytics

Pramod SBhattma
P
bhatotia@mpi-sws.org

Flavio P. Junqueira
Microsoft Research
fpj@microsoft.com

ABSTRACT
Sliding window analytics is often used in distributed dat
’ 1

computing f yzing large streams of continuo
When pairs of consecutive windows overlap, there is a potent
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1 Introduction

a growing use of “big dz :
that is collected ovi rge period of time
ature of the analysis, or in order to bound the compu-

systems for the |
ysis of d
due to the

up the output incrementally, more efficiently than
from scratch. However, in most systems, realizing this potential re-
quires 1o ex manage the ate for
overlapping windows, and devise an application-specific algorithm

to incrementally update the output.
In this paper, we present self-adjusting contraction trees, a set
of data structures and algorithms for tr ently updating the

output of a sliding window computation as the window moves,

1 of analyzing a i growing data set,
ons often resort to a sliding window is. In this type
scope of the d analysi 1to an inter-
t of collected data, and, px
appended to the window and olde!
they become less relevant to the analysi

the entire
produced inputs are
discarded from it
The basic approach for sliding window analytics is to recom-
pute over the entire window from scratch whenever the window

while reusing, to the extent possible, results from prior ¢
tions.

Self-adjusting contraction trees structure sub-computations

slides. C ly, even old, data items that remain
in the window are reprocessed, thus consuming unnecessary com-
i nd limiting the timeliness of result

ata-paralle]l computation in the form of a shallow (loga
depth) balanced data LIC|anIcm,c graph, through whichi ll\]‘lul chan-
ges are cff ly prop 1 in asys y sub-linear time.
We implemented self-adjusting contraction trees in a system call-
ed Slider. The design of Slider incorporates several novel tech-
niques, most notably: (i) a set of self balancing trees tuned for dif-
nts of sliding window computation (append-only, fixed-
le-width slides); (ii) a split processing mode, where
a background pre-processing stage leverages the predictability of
input changes to pave the way for a more e t foreground pro-
cessing whe : and (iii) an extension of the da
structures to handle multiple-job workflows such as data-flow que

One way to improve on the basic approach is to use incremen-
tal update mechanisms, where the outputs are updated to accom-

modate the arrival of new data instead of recomputing them from
wch. Such i Pr n be signi Wyfullu\
ymptotically—more efficient than the basic appr

larly in cases when the size of the window is large re
crement hy which the window slides.

1o devise
approach, the progr

processing. We evaluated Slider using a variety of
and real-world case studies. Our results show significant perfe
mance gains without requiring any changes to the existing applic
tion code used for non-incremental data processing.
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While dynamic algorithms ca arch in the algo-
rithms community shows that they are often difficult to design,
alyze, and implement even for simple problems [8, 22, 25, [37).
Moreover, dynamic algorithms are overwhelmingly designed for
the uniprocessor computing model, making them ill-suited for the
parallel and distributed systems used in large-scale data analytics.

Given the y benefits of our
answers the following question: Is it possible to achieve the
benefits of incremental sliding window analytics without requiring
dynamic algorithms? Previous work on incremental computation
in batch-processing systems [18,[19, 27] shows that such gains are
possible to obtain in ., without changing the
original (single pass) d However, these systems
did not leverage the partic s of sliding windows
and resort solely to the memoization of sub-computations, which
still requires time proportional to the size of the whole data rather
(albeit with a small constant) than the change itself.
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A quick recap.

Where we are

Veracity
standing in Distribution
Big Data
platforms? Melacity

Volume




Distributed
Data Stores:

Tao, HDFS, GFS
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Main Memory
Systems:

Hekaton, Hyper,
SAP HANA
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based Data
Management:

Spark, LinkedIn
ecosystem, Hive |}~
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Questions on

What are data streams? How to manage and

Unbounded sequence of values process data streams?

generated in real time Windowed analytics?



&% p;«\\\l '“h—_ LAy
\ ‘ B &
S A5 ?fn

-..s\\ 0.&

..-,
. —c
i ;r‘l,




Classifications of

Direction of movement of endpoints  Window size

Logical or time-based Window
Physical or count-based window
Partitioned window

Predicate window

Fixed window

Sliding window

Landmark (append-only) window




Re-compute from scratch

Incremental Computations

Dynamic Algorithms




 Slider

A system implementing self-adjusting contraction trees,
Supporting incremental updates efficiently and transparently in a distributed setting.
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Variable-width slides
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Delete
0&1
I —

Recomputed
for deleted items

Fresh execution
for
inserted items

Recomputed
for
inserted items

Variable-width slides
Frequent changes of window
size
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Split processing v no-processing
for bucket # 0
Background

pre-processing

Foreground
v processing

Update path (b) w/ background mode

for bucket #0

(a) foreground only mode

Fixed-width slides
Split processing
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Append-only Windows
Split processing
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Cache Gl Memoization
replacement 9 <«——  deletion
: collector s
policy policy
Index for objects
Scheduler
Get/Put

| Shim I/0 layer |‘W

Slave-1 Slave-2 Slave-N

In-memory
memoization

In-memory

In-memory
memoization

memoization
cache

cache cache
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Fault-tolerant memoization layer

Slave-1 disk Slave-2 disk Slave-N disk

Slider Architecture



Conclusions

Taking advantage of Contraction Trees

for efficient update and organized dependency
graph (Stable Window Computations)

Performance gains w.r.t computing from scratch
and Strawman approach.

Effective optimizations: Split-processing,
scheduler modifications, Data-flow query interface,
In-memory distributed caching.

Performance Overhead. High runtime overhead
for data-intensive applications.

Space Overhead. High space overhead for specific
data-intensive applications especially in variable
-width windows.
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The simple act of paying attention can take you a long way.
-Keanu Reeves

Thanks for your attention!
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K-Means HCT KNN Matrix  subStr
Microbenchmark applications

m How can garbage collection mechanisms
compensate for the space overhead of data-
intensive applications?

What are differences between

'f:} the architectures of Spark

Stream and Slider ?

Slider supports aggregation
functions with associative property.
What about other computations?



